Abstract

Polymer gels undergoing the oscillatory Belousov-Zhabotinsky (BZ) reaction are one of the few synthetic materials that exhibit biomimetic mechano-chemical transduction, converting mechanical input into chemical energy. Here, we consider self-oscillating BZ gels that are subjected to periodic mechanical forcing, and model the entrainment of the oscillatory gel dynamics to this external stimulus. The gel size is assumed to be sufficiently small that the chemo-mechanical oscillations are spatially uniform. The behavior of the system is captured by equations describing the kinetics of the oscillatory BZ reaction in the gel coupled to equations for the variations in gel size due to the inherent reaction and imposed force. We employ the phase dynamics approach for analyzing the entrainment of the BZ gel to force- and strain-controlled compressive deformations. The phase response curves are obtained using Malkin's method, and time-averaging is applied to extract the slow phase dynamics caused by the periodic forcing. We demonstrate that the entrainment of the self-oscillating BZ gel is sensitive to the chemo-mechanical coupling in gel, the mode of deformation, and the level of static compression. Kuramoto's model of phase oscillators is shown to be applicable if the external forcing is purely harmonic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.