Abstract

Many examples of microfluidic systems have been studied in various fields. Normally, micropumps in microfluidic systems are powered by electricity or heat generated from electric energy and the actuation is controlled by on-off switching of external inputs. Herein we report a novel autonomous flow control inside microfluidic channels powered by self-oscillating gels without external control devices. Self-oscillating gels exhibit a volume oscillation driven by the oscillatory Belousov-Zhabotinsky (BZ) reaction. Our approach greatly simplifies the microfluidic system construction because there is no need for the electric wiring and source. In this paper, we first demonstrate a directional fluid pumping within microfluidic channels and a directional flow rate was 0.02 μL/min utilizing self-oscillating gels. This self-actuated pump could serve as a new framework for microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.