Abstract

Carbon Nanotube (CNT) ribbon is a thin layer of aligned, partially overlapping CNTs drawn from a forest of CNTs grown on a substrate. The electrical properties of the ribbon must be understood to put this material into multifunctional applications. Measurements show that CNT ribbon exhibits interesting characteristics including frequency-dependent electrical impedance. The impedance is mainly a combination of resistive and capacitive impedance. The magnitude of the impedance of ribbon increases moderately with increasing frequency then decreases significantly at higher frequency, MHz and above. An electrical model was developed to approximate the electrical impedance of the CNT ribbon. Based on this model, some important properties of the CNT ribbon can be understood. The ribbon capacitance, CNT–CNT contact resistance and resistivity can be approximated using the model. This information is useful in determining the suitability of ribbon for different applications. Methods to improve the electrical conduction of CNT ribbon are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call