Abstract

This paper discusses the current status and the challenges associated with the fabrication of carbon nanotube (CNT) interconnects. This application needs innovative technological solutions for realizing high quality CNT growth at low growth temperatures. In addition, the CNT integration process should be CMOS compatible while at the same time it should preserve the quality of the CNT. We show that the CNT length at low growth temperatures is limited as a result of growth termination. Moreover, the carbon forest population below 500°C contains predominately multi-walled CNT (MWCNT). We show that generating Ni catalyst particles from a thin film only reaches densities of 1012cm−2 on TiN. Under the assumption that each particle yields a CNT, the resulting CNT density is still at least one order of magnitude too low to compete with Cu vias in local interconnects. For DRAM and Flash contacts, one MWCNT per contact hole is sufficient to satisfy the contact resistance requirement set by the ITRS roadmap. In order to protect the CNTs during the integration process, we evaluated different oxide encapsulations of the CNT and its impact on the electrical performance for 150nm CNT contacts metallized with Cu single damascene top contact. The yield plots show an improved yield and contact resistance when using an additional Al2O3 layer to encapsulate the CNT. The comparison of our electrical results with theory indicates there is still room for improvement in CNT quality and contact resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.