Abstract

Mechanical response of nano-based composites is generally influenced by interaction of filler and matrix at interface. Increasing filler-loading within the composite may cause spatial limitation toward best dispersion of filler, and since synthesizing a totally agglomerated-free nanocomposite is difficult, filler and matrix interaction needs to be perfectly modeled. A micromechanical model is developed in this study based on the common Halpin–Tsai theory to predict the elastic stiffness of vinyl ester/exfoliated graphite platelet nanocomposites. The model considers near-rational ideal (uniformly dispersed) mixed with clustered filler-network to simulate filler-distribution conditions. A filler-dispersion level based on the filler concentration has been proposed mathematically in this study. Predictions of the proposed model considering filler morphology were compared with the predictions of the Halpin–Tsai model and the experimentally obtained results as well. The proposed model shows better accuracy in terms of stiffness over predictions of the Halpin–Tsai model and appears in a very good agreement with the experimental results obtained for vinyl ester nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.