Abstract

One of the challenges in designing resilient human-machine systems is that machine capabilities are inherently rigid. A resilient joint cognitive system can anticipate and adapt to changing work demands effectively, but limitations of machines can make this adaptation constrained and less fluid. By identifying and accommodating for these rigidities in the design of human-machine system architectures, developers can build human-machine systems that support multiple contexts. This paper proposes a work-modeling approach for analyzing joint human-machine work strategies, focusing on identifying interdependencies that would support opportunistic adaptation and reduce the risk of machine rigidity leading to brittle failures of a human-machine system. The approach is applied to a case study in space operations to demonstrate how interdependencies can be identified and evaluated. The results of this analysis provide early insight into how team adaptation and machine limitations can be systematically accounted for in system architecture design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.