Abstract

Elastomers, as a typical category of soft dielectrics, have shown great potential for developing stretchable electronics and soft transducers. However, the performance of dielectric elastomers (DEs) is susceptible to the dielectric permittivity of the material, whether as insulators or actuators. On the other hand, experiments suggest that the material viscoelasticity significantly influences the dielectric permittivity of DEs. Based on the theory of finite-deformation viscoelasticity, this work adopts the Brillouin function to develop a modeling framework to examine the effect of material viscoelasticity on the dielectric permittivity for the first time. A comparison of the data fitting results between the models with and without consideration of the material viscoelasticity is presented. Simulation results also reveal that the viscous network of the elastomer exerts a mitigation effect on the decrease in the dielectric permittivity when the material is deformed. Furthermore, it is found that the loading rate is a key parameter that strongly affects the dielectric permittivity, mainly through the inelastic deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call