Abstract

Spatial changes in the dry deposition of ozone to the sea surface associated with ozone uptake by the dissolved iodide ions were analyzed in the northwestern Gulf of Mexico using the Community Multiscale Air Quality Model (CMAQ). The dry deposition module in CMAQ was modified using a formula developed by Chang et al. [2004. Ozone deposition to the sea surface: chemical enhancement and wind speed dependence. Atmospheric Environment 38, 1053–1059], which accounts for chemical enhancement by iodide reacting with ozone in seawater. In addition, an attempt was made to incorporate iodide concentrations from the satellite-derived estimates of near-surface chlorophyll a concentrations into the CMAQ gridded fields. One-month CMAQ simulations conducted with the modified module including iodide reaction showed a significant increase in the dry deposition velocity of ozone onto the sea surface, especially Texas and Louisiana Coast corresponding to the area with high iodide concentrations. On average, about 70% enhancement of ozone dry deposition velocity over the seawater was attributed to the iodide effect alone and the rest is mostly due to the effects of wind. The enhanced deposition velocity by iodide effect led to the marked increase in dry deposition amounts mostly near the coast, resulting in some changes in ambient ozone concentration. Interestingly, a small decrease in deposition amounts was found just inland from the shoreline, indicating that the iodide interaction can also affect ozone concentration in the inland coastal area. An in-depth analysis of a 2-day simulation showed the iodide effects on changes in the spatiotemporal distributions of the ozone deposition and concentration, which are highly dependent on coastal winds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.