Abstract

As an essential component of the cytoskeleton, actin filaments play a key role in a variety of cellular physiological activities. To better understand the function of actin filaments, which are a special kind of polymer chain, researchers have started to focus on the Brownian dynamics of polymers. Currently, to study the dynamics of polymers, classical explicit bead-spring models and finite-element methods (FEMs) have both been broadly used. However, compared to bead-spring models, FEMs can address the mechanical properties of actin filaments and actin networks with more detail and better accuracy. However, current FEMs do not consider the dynamic assembly of actin into an actin filament network. Here, we extend the traditional FEM and present a new framework of the FEM based on the co-rotational grid method, which allows us to simulate the dynamic growth and branching of actin filaments. Several examples are studied. The proposed numerical model is capable of capturing the dynamic assembly of actin filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.