Abstract

ABSTRACT A mathematical model was developed to describe the biodegradation kinetics of perchlorate in the presence of nitrate and oxygen as competing electron acceptors. The rate of perchlorate degradation is described as a function of the electron donor (acetate) degradation rate, the concentration of the alternate electron acceptors, and rates of biomass growth and decay. The kinetics of biomass growth are described using a modified Monod model, and inhibition factors are incorporated to describe the influence of oxygen and nitrate on perchlorate degradation. In order to develop input parameters for the model, a series of batch biodegradation studies were performed using Azospira suillum JPLRND, a perchlorate-degrading strain isolated from groundwater. This strain is capable of utilizing oxygen, nitrate, or perchlorate as terminal electron acceptors. The maximum specific growth rate (μmax) and half-saturation constant (K S don) for the bacterium when utilizing either perchlorate or nitrate were similar; 0.16 per h and 158 mg acetate/L, respectively. However, these parameters were different when the strain was growing on oxygen. In this case, μmax and K S don were 0.22 per h and 119 mg acetate/L, respectively. The batch experiments also revealed that nitrate inhibits perchlorate biodegradation by this strain. This finding was incorporated into the model by applying an inhibition coefficient (K i nit) value of 25 mg nitrate/L. Combined with appropriate groundwater transport models, this model can be used to predict perchlorate biodegradation during in situ remediation efforts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.