Abstract

A new model is proposed to describe the response of laminated composite beams consisting of one shape memory alloy layer and one functionally graded material layer. The model accounts for asymmetry in tension and compression of the shape memory alloy behavior and successfully describes the dependence of the position of the neutral surface on phase transformation within the shape memory alloy and on the load direction. Moreover, the model is capable of describing the response of the composite beam to both loading and unloading cases. In particular, the derivation of the equations governing the behavior of the beam during unloading is presented for the first time. The effect of the functionally graded material gradient index and of temperature on the neutral axis deviation and on the overall behavior of the beam is also discussed. The results obtained using the model are shown to fit three-dimensional finite element simulations of the same beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.