Abstract

The explicit water molecular dynamics simulation was used to study tetramethylammonium and tetraethylammonium chloride and bromide solutions in water at 298 K. The outcome of the simulations in the form of various distribution functions was used to construct the solvent-averaged potentials between interacting molecules. In the next step, which involved the Ornstein-Zernike integral equation theory in the hypernetted chain approximation, these potentials were used to calculate the osmotic coefficients. We showed that this approach is able to explain the experimental results for the osmotic pressure of these salts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.