Abstract

Aliphatic x,y-ionenes are polyelectrolytes in which x and y denote the numbers of methylene groups separating quaternary ammonium ions. They represent useful model substances for studying hydrophobic and charge effects in aqueous solutions. We used isothermal titration calorimetry to measure the enthalpies of mixing, ΔH(mix), of 3,3- and 6,6-ionene fluorides and bromides with low molecular weight salts (NaF, NaCl, NaBr, and NaI) at 298 K in water. The signs and magnitudes of the measured enthalpies depend on the hydrophobicity of the ionene and on the nature of the added salt. For example, addition of sodium fluoride to solutions of 3,3- and 6,6-ionene fluorides produced endothermic effects, while addition of sodium bromide to 3,3-ionene bromide resulted in a strong exothermic effect. Interestingly, mixing of 6,6-ionene bromide and NaBr solutions in water gave a small exothermic heat effect. Polyelectrolyte theories, based on continuum-solvent models, predict enthalpies of mixing to be positive (endothermic) for all the solutions examined in this work. The ion-specific effect is more strongly expressed in ionene solutions with higher charge density (3,3-ionene). The most important result of this work is the finding that the enthalpy of mixing of 3,3- (and of 6,6-ionene) fluorides with sodium halides can be expressed as a linear function of the enthalpy of hydration of the halide counterions. The experimental results were complemented with an explicit water molecular dynamics simulation of solutions of oligoions modelling 3,3- and 6,6-ionenes. The computer simulation results for various nitrogen-counterion pair distribution functions were in most cases consistent with the enthalpy measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.