Abstract

Even though anisakiasis is considered, nowadays, a significant threat to public health all over the world, no attempt has been made up to date to mathematically describe the thermal susceptibility of Anisakis larvae in the third stage (L3). To fill this gap, in this paper, more than 10,000 free (non-encysted) Anisakis L3 were individually heat treated in a thermal cycler at temperatures between 44 °C and 61 °C for different exposure times. After heat exposition, viability was assessed in each larva, survival curves at isothermal conditions were derived, and the effectiveness of four kinetic models (fundamental kinetic model, Mafart model, and probit and logit models) in describing these curves was tested. Evaluation of larvae viability after heat exposition revealed sigmoidal survival curves that increased their steepness with temperature. Of the four models tested, the Mafart model was the one that best fitted the data only differing from the observed survival ratios by 0.12 units on average. Validation experiments performed at temperatures different to those used to create the model corroborated its predictive capacity. Future efforts should be focused in predicting larvae viability at non-isothermal conditions as those occurring during fish cooking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.