Abstract
AbstractThe Tonga‐Kermadec subduction zone exhibits the fastest observed trench retreat and convergence near its northern end. However, a paradox exists: despite the rapid trench retreat, the Tonga slab maintains a relatively steep dip angle above 400 km depth. The slab turns flat around 400 km, then steepening again until encountering a stagnant segment near 670 km. Despite its significance for understanding slab dynamics, no existing numerical model has successfully demonstrated how such a distinct slab morphology can be generated under the fast convergence. Here we run subduction models that successfully reproduce the slab geometries while incorporating the observed subduction rate. We use a hybrid velocity boundary condition, imposing velocities on the arc and subducting plate while allowing the overriding plate to respond freely. This approach is crucial for achieving a good match between the modeled and observed Tonga slab. The results explain how the detailed slab structure is highly sensitive to physical parameters including the seafloor age and the mantle viscosity. Notably, a nonlinear rheology, where dislocation creep reduces upper mantle viscosity under strong mantle flow, is essential. The weakened upper mantle allows for a faster slab sinking rate, which explains the large dip angle. Our findings highlight the utilizing rheological parameters that lead to extreme viscosity variations within numerical models to achieve an accurate representation of complex subduction systems like the Tonga‐Kermadec zone. Our study opens new avenues for further study of ocean‐ocean subduction systems, advancing our understanding of their role in shaping regional and global tectonics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have