Abstract
There is a burgeoning literature on mortality models for joint lives. In this paper, we propose a new model in which we use time-changed Brownian motion with dependent subordinators to describe the mortality of joint lives. We then employ this model to estimate the mortality rate of joint lives in a well-known Canadian insurance data set. Specifically, we first depict an individual’s death time as the stopping time when the value of the hazard rate process first reaches or exceeds an exponential random variable, and then introduce the dependence through dependent subordinators. Compared with existing mortality models, this model better interprets the correlation of death between joint lives, and allows more flexibility in the evolution of the hazard rate process. Empirical results show that this model yields highly accurate estimations of mortality compared to the baseline non-parametric (Dabrowska) estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.