Abstract

There is a burgeoning literature on mortality models for joint lives. In this paper, we propose a new model in which we use time-changed Brownian motion with dependent subordinators to describe the mortality of joint lives. We then employ this model to estimate the mortality rate of joint lives in a well-known Canadian insurance data set. Specifically, we first depict an individual’s death time as the stopping time when the value of the hazard rate process first reaches or exceeds an exponential random variable, and then introduce the dependence through dependent subordinators. Compared with existing mortality models, this model better interprets the correlation of death between joint lives, and allows more flexibility in the evolution of the hazard rate process. Empirical results show that this model yields highly accurate estimations of mortality compared to the baseline non-parametric (Dabrowska) estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call