Abstract

Polymer electrolyte membrane fuel cells are efficient energy converters and provide electrical energy, water and oxygen depleted air with a low oxygen content as exhaust gas if fed with air. Due to their low emission of greenhouse gases and noise they are investigated as replacement for auxiliary power units currently used for electrical power supply on aircraft. Oxygen depleted air, called ODA-gas, with an oxygen concentration of 10–11% and a low humidity can be used for tank-inerting on aircraft. A challenging task is controlling the fuel cell system for generation of dehumidified ODA-gas mass flow while simultaneously keeping bounds and gradients on control inputs. This task is attacked by a nonlinear model predictive control. Not all system states can be measured and some states measured exhibit a significant time delay. A nonlinear state estimation strategy builds the entire system state and compensates for the delay. The nonlinear model predictive control and the state estimation are derived from the system model, which is presented. Simulation and experimental results are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.