Abstract
A kinetic model accounting for all salient features of the Na+ channel of the squid giant axon is provided. The model furnishes explanations for the Cole-Moore-like effect, the rising phase of the ON gating current and the slow ‘intermediate component’ of its decaying phase, as well as the gating charge immobilization. Experimental ON ionic currents are semi-quantitatively simulated by the use of only three free parameters, upon assuming that the Na+ channel opening proceeds along with the stepwise aggregation of its four domains, while they are moving their gating charge outward under depolarizing conditions. The inactivation phase of the ON ionic current is interpreted by a progressive electrostatic attraction between the positively charged ‘hinged lid’ containing the hydrophobic IFM triad and its receptor inside the channel pore, as the stepwise outward movement of the S4 segments of the Na+ channel progressively increases the negative charge attracting the triad to its receptor. The Na+ channel closing is assumed to proceed by repolarization-induced disaggregation of its domains, accompanied by inward movement of their gating charge. The phenomenon of ‘gating charge immobilization’ can be explained by assuming that gradual structural changes of the receptor over the time course of depolarization strengthen the interaction between the IFM triad and its receptor, causing a slow release of the gating charge during the subsequent repolarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.