Abstract

The adaptation of prevertebra size to embryo size is investigated in the framework of a reaction-diffusion model involving a Turing pattern. The reaction scheme and Fick's first law of diffusion are modified in order to take into account the departure from dilute conditions induced by confinement in smaller embryos. In agreement with the experimental observations of scaling in somitogenesis, our model predicts the formation of smaller prevertebrae or somites in smaller embryos. These results suggest that models based on Turing patterns cannot be automatically disregarded by invoking the question of maintaining proportions in embryonic development. Our approach highlights the nontrivial role that the solvent can play in biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call