Abstract

SummaryAn energy approach is proposed as a complement to the stress approach commonly considered for investigating soil desiccation cracking. The elastic strain energies before and after crack initiation are estimated by both numerical and analytical solutions. The energy released by cracking is then compared with the fracture energy to discuss crack initiation conditions. This leads to combined energy and stress conditions for crack initiation following Leguillon's theory. An approximate analytical solution is derived from a variational formulation of the porous elastic body equations. A cohesive zone model and finite element code are used to simulate crack propagation in an unsaturated porous body. This analysis shows that the energy criterion is reached before the stress criterion, and this can explain unstable crack propagation at the beginning. The approximate analytical solution allows predicting correctly the crack depth and opening in its initiation stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call