Abstract
Computational chemistry techniques have become increasingly important tools for chemists seeking to address scientific questions. As such, it is important that undergraduate chemistry students develop competence in this emerging field of chemistry. One strategy to gain proficiency involves exposing students to computational methods of increasing depth and complexity during each year of their laboratory curriculum, rather than solely at late stages of their education. The computational chemistry exercises described herein are designed to be completed in one introductory-level organic chemistry laboratory period, and they build upon concepts covered in traditional organic lecture and lab curricula. Students generate electrostatic potential maps for substituted acetic acids to analyze bond polarity and pKa, model acetate to explore resonance, and conduct conformation searches for monosubstituted cyclohexanes to examine the influence of sterics on conformational preference. They also generate reaction coordin...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.