Abstract

Advances in non-linear control theory have made it possible to develop controllers for non-linear dynamic systems in their nature. The low-cost proportional control valves of the hydraulic control system are examples of such a system where there is no linearity due to the structure of the valves and the flaws in the spool. However, the non-linear analysis and regulation of these hydraulic systems cannot be done without a proper valve model. This paper presents a methodology for the development of an efficient unified model of a three-point hitch (TPH) electro-hydraulic proportional control valve control system for agricultural tractors by means of a parameter estimation technique. Modeling and simulation of the proportional control valve was performed using MATLAB Simulink software. Parameter estimation methodology was used to optimize the effective orifice opening of the solenoid valve to meet the flow characteristics available in the manufacturer's technical data sheet for the proportional control valve model parameters. Such unified Simulink models are useful for simulation, practical capability testing, and non-linear control design. Modeling and simulation of electro-hydraulic hitch (EHH) control valve were made and simulation results were compared with actual experimental results. The simulation results of the TPH lifting and lowering time were found to vary 4 and 12.5 %, respectively with the experimental results. This type of parameterized valve models facilitates their implementation in dynamic simulation models of complex hydraulic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call