Abstract

Abstract We present a new model of sensorimotor learning in a systems-level cognitive model, LIDA. Sensorimotor learning helps an agent properly interact with its environment using past experiences. This new model stores and updates the rewards of pairs of data, motor commands and their contexts, using the concept of reinforcement learning; thus the agent is able to generate (output) effective commands in certain contexts based on its reward history. Following Global Workspace Theory, the primary basis of LIDA, the process of updating rewards in sensorimotor learning is cued by the agent’s conscious content, the most salient portion of the agent’s understanding of the current situation, issued by the Global Workspace module of LIDA. Furthermore, we add a dynamic learning rate to control the extent to which a newly arriving reward may affect the reward update. This learning rate control mechanism is inspired by a hypothesis from neuroscience regarding memory of errors. Our experimental results show that sensorimotor learning using a dynamic learning rate improves performance in a simulated movement of pushing a box.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.