Abstract
Abstract Episodic memory plays important role in animal behavior. It allows to reuse general skills for solution of specific tasks in changing environment. This beneficial feature of biological cognitive systems is still not incorporated successfully in an artificial neural architectures. In this paper we propose a neural architecture with shared episodic memory for multi-task reinforcement learning (SEM-PAAC). This architecture extends Parallel Advantage Actor Critic (PAAC) with two recurrent sub-networks for separate tracking of environment and task states. The first subnetwork store episodic memory and the second one allows task specific execution of policy. Experiments in the Taxi domain demonstrated that SEM-PAAC has the same performance as PAAC when subtasks are solved separately. On the other hand when subtasks are solved jointly for completing full Taxi task SEM-PAAC is significantly better due to reuse of episodic memory. Proposed architecture also successfully learned to predict task completion. This is a step towards more autonomous agents for multitask problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.