Abstract

A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties. Simulating solute segregation in a plastically deformed crystalline system at atomic resolution remains challenging. The objective is to efficiently model and predict a physically informed segregated solute distribution rather than simulating a series of diffusion kinetics. To address this objective, we coupled molecular dynamics (MD) and Monte Carlo (MC) methods using a novel method based on virtual atoms technique. We applied our MD-MC coupling approach to model off-lattice carbon (C) solute segregation in nanoindented Fe-C samples containing complex dislocation networks. Our coupling framework yielded the final configuration through efficient parallelization and localized energy computations, showing C Cottrell atmospheres near dislocations. Different initial C concentrations resulted in a consistent trend of C atoms migrating from less crystalline distortion to high crystalline distortion regions. Besides unraveling the strong spatial correlation between local C concentration and defect regions, our results revealed two crucial aspects of solute segregation preferences: (1) defect energetics hierarchy and (2) tensile strain fields near dislocations. The proposed approach is generic and can be applied to other material systems as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.