Abstract

Acoustic telemetry is a common tool used in fisheries management to estimate fish space use (i.e., occupancy) from a local habitat scale to entire systems. Numerous analytical models have been developed to estimate different aspects of fish movement from telemetry datasets, yet evaluations of model performance and comparisons among models are limited. Here, we develop a framework to evaluate model estimates of regional occupancy in large and fragmented systems using an acoustic receiver array in Lake Champlain. We simulated the tracks of 100 acoustically tagged fish using a random walk function and created detection events based on receiver positions and distance-based detection probability. Regional occupancy for the simulated data was estimated by six movement models that ranged in analytical complexity, and results were compared to the true distributions for each simulated track to evaluate model error. The six movement models included: (1) a basic residency index using detections alone; (2) a residency index using last-observation-carried-forward; (3) a centers of activity model; (4) linear and non-linear interpolations (i.e., least-cost paths); and (5 and 6) two dynamic Brownian bridge movement models generated using separate packages in R. We developed a model selection process to compare model performance and select the optimal analysis based on simulation error. This process showed significant differences in model performance among the six movement models based on model error. Overall, the model generating least-cost paths using linear and non-linear interpolations consistently provided the most accurate regional occupancy estimates. Based on these simulation results, we applied this model to a case study that evaluated patterns in the regional distribution of stocked lake trout (Salvelinus namaycush) in Lake Champlain, which demonstrated distinct regional occupancy of two stocked lake trout groups. These results demonstrate potential for large variability in interpretation of acoustic telemetry data for describing regional fish distribution dependent on the analytical method used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.