Abstract

Modeling potential evapotranspiration (ET0) is an important issue for water resources planning and management projects involving droughts and flood hazards. Evapotranspiration, one of the main components of the hydrological cycle, is highly effective in drought monitoring. This study investigates the efficiency of two machine-learning methods, random vector functional link (RVFL) and relevance vector machine (RVM), improved with new metaheuristic algorithms, quantum-based avian navigation optimizer algorithm (QANA), and artificial hummingbird algorithm (AHA) in modeling ET0 using limited climatic data, minimum temperature, maximum temperature, and extraterrestrial radiation. The outcomes of the hybrid RVFL-AHA, RVFL-QANA, RVM-AHA, and RVM-QANA models compared with single RVFL and RVM models. Various input combinations and three data split scenarios were employed. The results revealed that the AHA and QANA considerably improved the efficiency of RVFL and RVM methods in modeling ET0. Considering the periodicity component and extraterrestrial radiation as inputs improved the prediction accuracy of the applied methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.