Abstract

The paper presents an approach toward the off-line computation of preference optimal flight paths against given air combat maneuvers. The approach consists of a multistage influence diagram modeling the pilot’s sequential maneuvering decisions and a solution procedure that utilizes nonlinear programming. The influence diagram graphically describes the elements of the decision process, contains a point-mass model for the dynamics of an aircraft, and takes into account the decision maker’s preferences under conditions of uncertainty. Optimal trajectories with respect to the given preference model are obtained by converting the multistage influence diagram into a discrete-time dynamic optimization problem that is solved with nonlinear programming. The initial estimate for the decision variables of the problem is generated by solving a set of myopic single stage influence diagrams that anticipate the future state of the aircraft only a short planning horizon ahead. The presented solution procedure is illustrated by a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call