Abstract

Wave-induced inundation in coastal zones is a serious problem for residents. Accurate prediction of wave run-up height is a complex phenomenon in coastal engineering. In this study, several machine learning (ML) models are developed to simulate wave run-up height. The developed methods are based on optimization techniques employing the group method of data handling (GMDH). The invasive weed optimization (IWO), firefly algorithm (FA), teaching–learning-based optimization (TLBO), harmony search (HS), and differential evolution (DE) meta-heuristic optimization algorithms are embedded with the GMDH to yield better feasible optimization. Preliminary results indicate that the developed ML models are robust tools for modeling the wave run-up height. All ML models’ accuracies are higher than empirical relations. The obtained results show that employing heuristic methods enhances the accuracy of the standard GMDH model. As such, the FA, IWO, DE, TLBO, and HS improve the RMSE criterion of the standard GMDH by the rate of 47.5%, 44.7%, 24.1%, 41.1%, and 34.3%, respectively. The GMDH-FA and GMDH-IWO are recommended for applications in coastal engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.