Abstract
The applied criteria for critical (limiting) levels of wear for various types of wear are listed. Based on the discretization of the volume of wearing parts and the time axis, a method is developed for calculating the following wear types: erosion, cavitation, abrasive wear at the boundary friction regime, and others. In the proposed methodology, it is possible to simulate the simultaneous occurrence of several types of wear both at different parts of the surface of the object and on the similar ones. It is possible to take into account the mutual influence of various types of wear. The dual nature of wear is taken into account: on the one hand, the wear values are dispersed even for the same levels of influencing parameters, on the other hand, providing consistent wear values of the surfaces in accordance with the kinematic schemes of their loading in conjugation. Various variants of the joint wear of surface sections in various interfaces are taken into account. For different types of wear, different calculation models can be used, collected in the appropriate model libraries. As an example of the tribo node, sliding bearings with a Babbitt layer are chosen. Parameters of the Babbitt wear models based on tin were experimentally obtained by the authors or taken from scientific and technical literature. Several series of calculations of tribo nodes with Babbitt layers have been performed and the calculation method working capacity has been demonstrated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have