Abstract

There are two difficulties encountered in modeling valveless micropumps using lumped-element methods. The pressure loss coefficient for fluidic diodes used in valveless pumps to rectify flow depends on the flow direction. A problem arises in choosing the proper loss correlation because the flow direction is not known a priori. Another problem is the quadratic form of the equation for the flow through the fluidic diodes, which brings about multiple solutions. The above problems become even more serious in multi-chamber cases. They are overcome in this study by suitably formulating the flow resistance. In addition, the flow inertia is accounted for in the unsteady model. The steady and unsteady models are evaluated by comparing with CFD simulations, which also serve to illustrate the flow field in more detail. It is shown that, compared with the steady model, the variation of the flow rate and pressure predicted by the unsteady model behaves in a close manner to those obtained by multidimensional calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call