Abstract

An increasing shift in operating conditions of hydropower turbines towards peak load operations comes with the necessity for numerical methods to account for such operations. This requires modifications to state-of-the-art CFD simulations. In the first part of this paper a 1D hydroacoustic model to represent the pressure oscillations in the penstock was introduced and coupled with a commercial CFD solver. Based on previous studies, various changes in cavitation and turbulence modeling were done to influence the behavior of a cavitating vortex rope typically occurring at high load conditions of a Francis turbine. In the second part, mesh motion was added to this model to simulate a load rejection starting from full load conditions. It was shown that additional extensions to the 3D CFD model are compulsory to model specific operating conditions as well as transient operations. Thus, accordance with measurement data at overload operation was improved and only small deviations remained. For the load rejection the maximum overspeed was well captured and the comparison of guide vane torques with model test measurements showed a sufficient agreement. With the gained insights, occurring effects which influence the performance and the life-time can be detected and conclusions for the hydraulic design as well as the operating mode can be drawn. Upcoming studies will focus on evaluating the flow field in detail and on reducing the remaining deviations by further extending the mathematical model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call