Abstract

The Jiles–Atherton (JA) theory of hysteresis has been extended in the present paper to model hysteresis in two-phase magnetic materials. Two-phase materials are those that exhibit two magnetic phases in one hysteresis cycle: one at lower fields and the other at higher fields. In magnetic hysteresis, the transition from one phase to the other i.e. low field phase to high field phase depends mainly on the exchange field. Hence, the material-dependent microstructural parameters of JA theory: spontaneous magnetization, MS, pinning factor, k, domain density, a, domain coupling, α, and reversibility factor, c, are represented as functions of the exchange field. Several cases based on this model have been discussed and compared with the measured data from existing literature. The shapes of the calculated and measured hysteresis loops are in excellent agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.