Abstract
As luminescence from co-doping systems is highly sensitive to the glass host and concentration of active ions due to complicated electronic transitions within respective active ions and complex energy transfer between them, it is desirable to develop a theoretical model to design and optimize the co-doping system before the fabrication and measurement of the sample. In this paper, we present a numerical approach to model the generation of tunable visible luminescence in multiple rare earth co-doped glasses. According to our research, a glass system with a special combination of Tb3+, Sm3+ and Dy3+ ions can emit tunable luminescence. When glasses co-doped with proper doping concentration of Tb3+ /Sm3+ /Dy3+ ions are excited by different wavelength in the range of 370-410 nm, the luminescent color can be tuned from yellowish white to orange-red. Our work suggests that the tunable luminescence from multiple rare earth co-doped glasses could have further application in colorful light emitting and other display devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.