Abstract

The drying process of polymeric coatings, particularly in the presence of surfactants, poses a complex challenge due to its intricate dynamics involving simultaneous heat and mass transfer. This study addresses the inherent complexity by employing Artificial Neural Networks (ANNs) to model the surfactant-enhanced drying of poly(styrene)-p-xylene coatings. A substantial dataset of 16,258 experimentally obtained samples forms the basis for training the ANN model, showcasing the suitability of this approach when ample training data is available. The chosen single-layer feed-forward network with backpropagation adeptly captures the non-linear relationships within the drying data, providing a predictive tool with exceptional accuracy. Our results demonstrate that the developed ANN model achieves a precision level exceeding 99% in predicting coating weight loss for specified input values of time, surfactant amount, and initial coating thickness. The model’s robust generalization capability eliminates the need for additional experiments, offering reliable predictions for both familiar and novel conditions. Comparative analysis reveals the superiority of the ANN over the regression tree, emphasizing its efficacy in handling the intricate dynamics of polymeric coating drying processes. In conclusion, this study contributes a valuable tool for optimizing polymeric coating processes, reducing production defects, and enhancing overall manufacturing quality and cost-effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call