Abstract
This study was carried out to analyze the garification process using Artificial Neural Network (ANN) based model of steady state simultaneous heat and mass transfer. Convective heat and mass transfer coefficients were obtained during garification process of fermented mash from cassava ages of different maturity. Empirical equations developed for heat, (hc) and mass, (hm) transfer coefficients [hc=0.017t2-0.388t+3.039, hm=0.042t2-0.914t+5.481]; with (R2>0.9) were best described by polynomial relationships. The optimum ANN model that produced convective heat and mass transfer coefficients for the garification process consisted of two hidden layers and twenty-five neurons in each hidden layer, with mean square error, mean absolute error, sum square error and R2 of 0.000015, 0.0030, 0.0082% and 0.995, respectively. The developed ANN model can be useful in the determination of heat and mass transfer rate for garification process and wide range of physical conditions. These results are equally important considerations for obtaining quality gari for commercial production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.