Abstract

The prediction of the consequences of a runaway reaction in terms of temperature and pressure evolution in a reactor requires the knowledge of the reaction kinetics, thermodynamics and fluid dynamics inside the vessel during venting. Such phenomena and their interaction are complex and yet to be fully understood, especially reactions where the pressure generation is totally or partially due to the production of permanent gases (gassy or hybrid systems). Moreover, these phenomena cannot be easily determined by laboratory scale experiments. In this paper, a dynamic model developed to simulate the behavior of an untempered reacting mixture during venting is presented. The model provides the temperature, pressure and mass inventory profiles before and during venting. A sensitivity study of the model was performed. This modeling work provides some insight regarding the interpretation of the data obtained from untempered system venting experiments. The outcome of this work contribute to improving the design of emergency relief systems for hybrid and gassy systems, where significant progress is still to be made in the experimental and modeling areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.