Abstract

The design of an emergency relief system (that is, a pressure safety valve or a rupture disk) for vessels, which may involve runaway reactions, requires knowledge of the chemical kinetics of the reactions involved. When safety-related problems are considered this is usually achieved using calorimetric tests, coupled with some suitable approximations on the kinetics of the reacting system. In this work we have analysed the extent to which the precise knowledge of the chemical kinetics influences the size of the relief system device for different reaction conditions. Decision criteria are proposed to identify situations where approximations in the kinetic mechanism lead to underestimation in the venting area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.