Abstract

A combined model taking account of the dislocation strengthening effects and particle cracking during tensile straining based on Eshelby equivalent inclusion method is presented to model the deformation behavior of SiCp/Fe composites. Stress-strain curves of the composites were simulated and it is found that the curves vary obviously with the volume fraction and particle size. The yield stress is increased significantly by increasing the volume fraction and decreasing the particle size. Stress in particles is very high during straining and the fraction of cracked particles increased obviously with increasing the particle size. These results indicate that higher volume fraction and finer particles can give better mechanical properties of the composites attributed to the increased load sharing effect and dislocation strengthening effects of the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call