Abstract

A two-dimensional modified cellular automaton (CA) model was developed to simulate the dynamic recrystallization (DRX) behaviour during thermo-mechanical processing. It provides a link for multiscale modeling to bridge the mesoscopic dislocation activities with the macroscopic mechanical properties. This model is applied to investigate the effect of initial grain sizes on DRX process in commercial pure copper. The simulated results indicate that the stable size of recrystallized grain is independent on initial grain sizes. However, the percentage of DRX is not only related to the thermo-mechanical parameters, but also influenced by the initial microstructure. It is concluded that larger initial grain sizes promote a delay in the DRX occur on commercial pure copper. The calculated results compare well with the limited number of experimental observations and theoretical conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call