Abstract
A key issue for modelling the thin slab casting (TSC) is to consider the evolution of the solid shell, which strongly interacts with the turbulent flow and in the meantime is subject to continuous deformation due to the funnel shape (curvature) of the mould. Here an enthalpy-based mixture solidification model with consideration of turbulent flow [Prescott and Incropera, ASME HTD, vol. 280, 1994, pp. 59] is employed, and further enhanced to include the deforming solid shell. The solid velocity in the fully-solidified strand shell and partially-solidified mushy zone is estimated by solving the Laplace's equation. Primary goals of this work are to examine the sensitivity of the modelling result to different model implementation schemes, and to explore the importance of the deforming and moving solid shell in the solidification. Therefore, a 2D benchmark, to mimic the solidification and deformation behaviour of the thin slab casting, is firstly simulated and evaluated. An example of 3D TSC is also presented. Due to the limitation of the current computation resources additional numerical techniques like parallel computing and mesh adaptation are necessarily applied to ensure the calculation accuracy for the full-3D TSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.