Abstract
A hemisquaraine dye molecule (CT1) was used as TiO2 sensitizer. The influence of the dye-adsorption time on the electrical impedance of a CT1-based dye-sensitized solar cell (DSC) was analyzed. Differently from what we observed with commercial Ru dye-based DSC, a non-monotonic effect of the impregnation time on the impedance has been found and the dye loading time is much reduced, a desirable outcome in economic grounds. This feature is analyzed in terms of the dye molecules tendency to aggregate close to the TiO2/electrolyte interface. A physical model that fits well the experimental data is proposed, which also takes into account a correction related to the difference between the illuminated area of the cell and the total area available in the electrical measurements.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have