Abstract

The authors present a calculation model of surface roughness scattering (SRS) in nanowires (NWs) based on atomistic description of electronic states by an $s{p}^{3}{d}^{5}{s}^{*}$ tight-binding scheme, and then this model is applied to hole transport in rectangular cross-sectional germanium (Ge) NWs. In this SRS model, the change of electronic band structures due to width or height reduction is first computed, and then it is expressed using an equivalent potential near the surface. The perturbation corresponding to a surface roughness is calculated from this equivalent potential. Using the aforementioned SRS model, hole mobility in Ge NWs was computed taking into account phonon scattering and SRS. The impacts of SRS on hole mobility in Ge NWs were analyzed, focusing on the valence band structure and hole states of NWs. The main results are as follows. At low hole density, the impacts of SRS are strongly dependent on NW geometry, and Ge NWs with high phonon-limited hole mobility, such as rectangular cross-sectional [110]-oriented NWs with large height along the [001] direction and square cross-sectional [111]-oriented NWs, tend to be less affected by SRS. At high hole density, however, the geometry dependence of hole mobility becomes weaker. These are understood from the nature of hole states and the valence band structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.