Abstract

This paper proposes a new mathematical model for calculation of stresses on the basis of experimentally measured values of strains and temperature changes for niobium microalloyed steel. Construction of model was done using a multiple regression analysis of the measured values of temperature change, deformation and stresses at four different stretching rates. All investigations were conducted on samples from the niobium microalloyed steel, using thermography and digital image correlation during static tensile testing. Constructed model was tested and validated on the experimentally obtained results. Model showed a good agreement of calculated stress values with experimentally obtained ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.