Abstract

A cellular automata (CA) method was employed to model static coarsening controlled by diffusion along grain boundaries at 1173 K and through the bulk at 1213 and 1243 K for a two-phase titanium alloy. In the CA model, the coarsening rate was inversely proportional to the 3rd power of the average grain radius for coarsening controlled by diffusion along grain boundaries, and inversely proportional to the 2nd power of the average grain radius for coarsening controlled by diffusion through the bulk. The CA model was used to predict the morphological evolution, average grain size, topological characteristics, and the coarsening kinetics of the Ti-6Al-2Zr-1Mo-1V (TA15) alloy during static coarsening. The predicted results were found to be in good agreement with the corresponding experimental results. In addition, the effects of the volume fraction of the α phase (Vf) and the initial grain size on the coarsening were discussed. It was found that the predicted coarsening kinetic constant increased with Vf and that a larger initial grain size led to slower coarsening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.