Abstract

We present a model to explain forward voltage degradation of body diode in 4H-SiC MOSFET, and evaluate the velocity of SF expansion. First, by using in-situ photoluminescence (PL) observation, we investigated how a stacking fault (SF) expands from a basal plane dislocations (BPD) in the 4H-SiC epitaxial layer. Second, double-diffused MOSFETs were developed and measured before and after degradation. Then, the characteristics of the forward voltage degradation were modeled by a combination of PL imaging and electrical measurement, and the calculated characteristics are in good agreement with the measured ones. Finally, we tested the SiC MOSFETs under various stress conditions and evaluated the velocity of the SF expansion by calculation. This results indicate that the velocity of SF expansion increased with increasing forward current density and junction temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call