Abstract

Mesoscale modeling of organic semiconductors relies on solving an appropriately parametrized master equation. Essential ingredients of the parametrization are site energies (driving forces), which enter the charge transfer rate between pairs of neighboring molecules. Site energies are often Gaussian-distributed and are spatially correlated. Here, we propose an algorithm that generates these energies with a given Gaussian distribution and spatial correlation function. The method is tested on an amorphous organic semiconductor, DPBIC, illustrating that the accurate description of correlations is essential for the quantitative modeling of charge transport in amorphous mesophases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.