Abstract

To represent material boundaries in the finite-difference time-domain or frequency-domain method, effective cell permittivity eeff can be introduced for each grid cell crossed by material interface. In this paper we revisit the derivation of tensorial eeff for a sloped interface, and describe possible interpolation schemes for coupling of different effective electric field and induction components near the interface. We put the resulting non-symmetric and symmetrized effective permittivity matrices to numerical tests in the frequency domain. For very-high-contrast interfaces the symmetrized schemes perform worse than simple staircasing while non-symmetrized interpolation retains the second-order convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.