Abstract
Abstract This study employed soft computing techniques, namely, support vector machine (SVM) and Gaussian process regression (GPR) techniques, to predict the properties of a scour hole [depth (ds) and length (Ls)] in a diversion channel flow system. The study considered different geometries of diversion channels (angles and bed widths) and different hydraulic conditions. Four kernel function models for each technique (polynomial kernel function, normalized polynomial kernel function, radial basis kernel, and the Pearson VII function kernel) were evaluated in this investigation. Root mean square error (RMSE) values are 8.3949 for training datasets and 11.6922 for testing datasets, confirming that the normalized polynomial kernel function-based GP outperformed other models in predicting Ls. Regarding predicting ds, the polynomial kernel function-based SVM outperforms other models, recording RMSE of 0.5175 for training datasets and 0.6019 for testing datasets. The sensitivity investigation of input parameters shows that the diversion angle had a major influence in predicting Ls and ds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.