Abstract

In recent years, using the detection of interstitial fluid glucose concentration to realize the real-time continuous monitoring of blood glucose concentration gets more and more attention, because for one person, the relationship between blood glucose concentration and interstitial fluid glucose concentration satisfies specific rules. However, the glucose concentration in interstitial fluid is not entirely equal to the glucose concentration in blood and has a physiological lag because of the physiological difference of cells in blood and interstitial fluid. Because the clinical diagnostic criteria of diabetes are still blood glucose concentration, the evaluation model of the physiological lag parameter between the glucose concentration in blood and the glucose concentration in interstitial fluid should be established. The physiological difference in glucose molecules uptake, utilization, and elimination by cells in blood and interstitial fluid and the diffusion velocity of glucose molecule from blood to interstitial fluid will be induced to the mass transfer model to express the physiological lag parameter. Based on the continuous monitoring of glucose concentration in interstitial fluid, the project had studied the mass transfer model to establish the evaluation model of the physiological lag parameter between the glucose concentration in blood and the glucose concentration in interstitial fluid. We have preliminary achieved to evaluate the physiological lag parameter exactly and predict the glucose concentration in blood through the glucose concentration in interstitial fluid accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call